
HNHN Hypergraph Networks with Hyperedge Neurons

Yihe Dong (Microsoft) Will Sawin (Columbia University) Yoshua Bengio (Mila)

Hypergraphs – definition

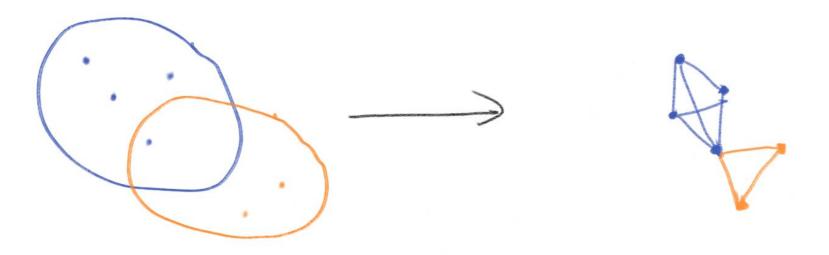
Hypergraph:

A graph generalization where one edge can join any number of nodes.

E.g: a hypergraph consisting of 3 hyperedges, e_1 , e_2 , and e_3 , and 5 hypernodes, v_1 , v_2 , v_3 , v_4 , and v_5 .

Hypergraphs – applications

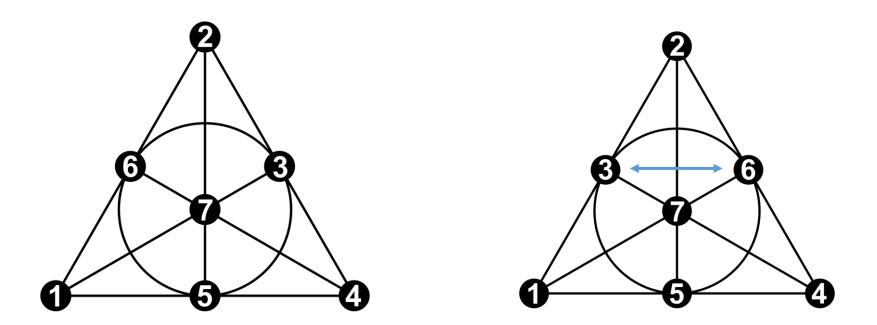
- Represent co-authorship networks
 - Hyperedges: authors.
 - Hypernodes: papers.
- Represent co-citation data
 - Hyperedges: papers that are co-cited together.
 - Hypernodes: citing papers.


Hypergraph representation learning

Prior work:

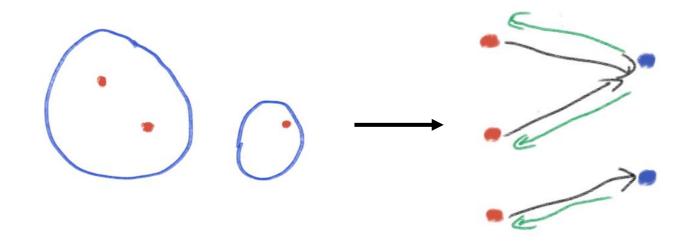
- GCN on hypergraph clique expansion [Zhou et al '07, Sun et al '08, Tu et al '18, Jian et al '18].
- GCN on hypergraph star expansion [Zien et al '99, Sun et al '08].
- HyperGCN [Yadati et al '19].
- HGNN [Feng et al '18].
- HCHA [Bai et al '19].
- Many others.

Limitations on existing approaches


• Graph convolution on clique expansion of hypergraph.

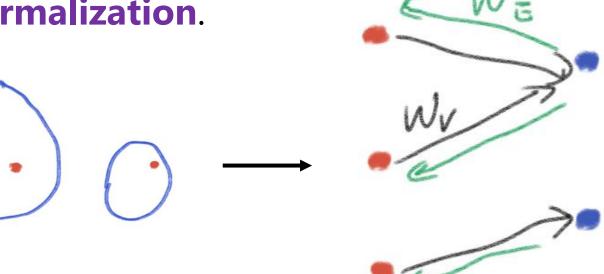
May lose hypergraph structural information.

Limitations on existing approaches


• Hypergraph example: Fano plane

Produces same clique expansion despite hypernode permutation.

Limitations on existing approaches


• Graph convolution on star expansion of hypergraph.

Treats hyperedges and hypernodes as the same.

HNHN – architecture

- Independent weights and nonlinearities for hypernodes and hyperedges.
 - Convolution directly on hypergraph, not graph expansion.
- Flexible dataset-specific normalization.

HNHN – architecture

• Generalizes both star and clique expansions:

- Star expansion when $W_V = W_E$.
- Clique expansion when only keeping node nonlinearities.

HNHN – normalization

- Hyperedge and hypernode normalization should **depend** on the **hyperedge degree** and **hypernode cardinality**.
 - Use normalization parameters α and β to account for edge degree and node cardinality, respectively.
- Example: paper with fewer authors are more predictive of its authors' specialty.

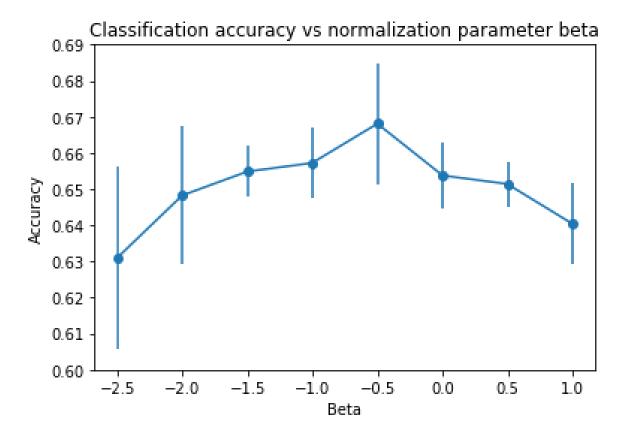
HNHN – normalization

• Compute node representation X'_V from hyperedge representation X_E :

$$X'_V = \sigma \left(D_{V,l,\alpha}^{-1} A D_{E,r,\alpha} X_E W_V + b_V \right)$$

- $D_{V,l,\alpha}$ and $D_{E,r,\alpha}$: normalization matrices depending on hyperedge cardinalities and normalization hyperparameter α .
- W_V , b_V : weights and bias.
- *A* : vertex-edge incidence matrix.
- Generalizes normalization used in many prior works.

Experimental datasets


- co-authorship
 - Cora
 - DBLB
- Co-citation
 - CiteSeer
 - PubMed

Hypernode classification

	Accuracy				Timing			
	DBLP				DBLP			
HyperGCN	71.3 ± 1.2	$55.0 \pm .9$	54.7 ± 9.8	60.0 ± 10.7	$563.4{\pm}27.8$	$183.4{\pm}2.7$	$15.6 \pm .2$	171.1 ± 2.8
* Fast	$70.5 {\pm} 14.3$	45.2 ± 12.9	56.1 ± 11.2	54.4 ± 10.0	$11.5{\pm}.1$	$2.9{\pm}.1$	$1.1\pm0.$	$2.5{\pm}.1$
HGNN	$77.6 \pm .4$	$58.2 \pm .3$	$61.1{\pm}2.2$	$63.3{\pm}2.2$	$802.9 {\pm} 59.2$	$298.4 {\pm} 12.2$	$30.5{\pm}.8$	$270.1 {\pm} 10.5$
HNHN	$\textbf{85.1}{\pm}\textbf{.2}$	$\textbf{63.9}{\pm}\textbf{.8}$	$64.8{\pm}1.6$	$75.9{\pm}1.5$	44.2 ± 1.3	$13.6{\pm}5.4$	$1.3 \pm .1$	$26.6 \pm .4$

- Node classification accuracy and timing results on various datasets compared to SOTA methods.
- * Fast stands for HyperGCN Fast.
- Accuracy measured in %, timing measured in seconds.

Dependence on normalization scheme

- $\beta = 0$ not necessarily optimal.
- Best $\beta < 0 \rightarrow$ paper with fewer authors more predictive of its authors' field.

Thank you

• Code: github.com/twistedcubic/HNHN